Infinite Matrices and Almost Convergence

Ab. Hamid Ganie ${ }^{\text {a,b }}$, Neyaz Ahmad Sheikh ${ }^{\text {a }}$
${ }^{a}$ Department of mathematics, National Institute of Technology Srinagar, 190006, India
${ }^{b}$ Department of mathematics, S.S. M College of Engineering and Technology Pattan -193121, J and K.

Abstract

In the present paper, we characterize $\left(r^{q}(u, p): f_{\infty}\right),\left(r^{q}(u, p): f\right)$ and $\left(r^{q}(u, p): f_{0}\right)$; where f_{∞}, f and f_{0} denotes, respectively, the spaces of almost bounded sequences, almost convergent sequences and almost sequences converging to zero, where the space $r^{q}(u, p)$ of non-absolute type have recently been introduced by Neyaz and Hamid (see, [13]).

1. Introduction, Background and Notation

Let ω denote the space of all sequences(real or complex). The family under pointwise addition and scalar multiplication forms a linear(vector)space over real of complex numbers. Any subspace of ω is called the sequence space. So the sequence space is the set of scalar sequences(real of complex) which is closed under co-ordinate wise addition and scalar multiplication. Throughout paper \mathbb{N}, \mathbb{R} and \mathbb{C} denotes the set of non-negative integers, the set of real numbers and the set of complex numbers, respectively.

Let X and Y be two sequence spaces and let $A=\left(a_{n k}\right)$ be an infinite matrix of real or complex numbers $a_{n k}$, where $n, k \in \mathbb{N}$. Then, the matrix A defines the A-transformation from X into Y, if for every sequence $x=\left(x_{k}\right) \in X$ the sequence $A x=\left\{(A x)_{n}\right\}$, the A-transform of x exists and is in Y; where $(A x)_{n}=\sum_{k} a_{n k} x_{k}$. For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞. By $A \in(X: Y)$ we mean the characterizations of matrices from X to Y i.e., $A: X \rightarrow Y$. A sequence x is said to be A-summable to l if $A x$ converges to l which is called as the A-limit of x. For a sequence space X, the matrix domain X_{A} of an infinite matrix A is defined as

$$
\begin{equation*}
X_{A}=\left\{x=\left(x_{k}\right) \in \omega: A x \in X\right\} . \tag{1}
\end{equation*}
$$

Let l_{∞} and c be Banach spaces of bounded and convergent sequences $x=\left\{x_{n}\right\}_{n=0}^{\infty}$ with supremum norm $\|x\|=\sup _{n}\left|x_{n}\right|$. Let T denote the shift operator on ω, that is, $T x=\left\{x_{n}\right\}_{n=1}^{\infty}, T^{2} x=\left\{x_{n}\right\}_{n=2}^{\infty}$ and so on. A Banach limit $L \stackrel{n}{n}$ is defined on l_{∞} as a non-negative linear functional such that L is invariant i.e., $L(S x)=L(x)$ and

[^0]$L(e)=1, e=(1,1,1, \ldots)$ (see, [2]).
Lorentz (see, [7]), called a sequence $\left\{x_{n}\right\}$ almost convergent if all Banach limits of $x, L(x)$, are same and this unique Banach limit is called F-limit of x. In his paper, Lorentz proved the following criterion for almost convergent sequences.

A sequence $x=\left\{x_{n}\right\} \in l_{\infty}$ is almost convergent with F-limit $L(x)$ if and only if

$$
\lim _{m \rightarrow \infty} t_{m n}(x)=L(x)
$$

where, $\quad t_{m n}(x)=\frac{1}{m} \sum_{j=0}^{m-1} T^{j} x_{n},\left(T^{0}=0\right)$ uniformly in $n \geq 0$.
We denote the set of almost convergent sequences by f.
Nanda (see, [11]) has defined a new set of sequences f_{∞} as follows:

$$
f_{\infty}=\left\{x \in l_{\infty}: \sup _{m n}\left|t_{m n}(x)\right|<\infty\right\}
$$

We call f_{∞} as the set of all almost bounded sequences.
A infinite matrix $A=\left(a_{n k}\right)$ is said to be regular (see, [11]) if and only if the following conditions (or Toeplitz conditions) hold:

> (i) $\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} a_{n k}=1$,
> (ii) $\lim _{n \rightarrow \infty} a_{n k}=0, \quad(k=0,1,2, \ldots)$
> (iii) $\sum_{k=0}^{\infty}\left|a_{n k}\right|<M, \quad(M>0, j=0,1,2, \ldots)$.

Let $\left(q_{k}\right)$ be a sequence of positive numbers and let us write, $Q_{n}=\sum_{k=0}^{n} q_{k}$ for $n \in \mathbb{N}$. Then the matrix $R^{q}=\left(r_{n k}^{q}\right)$ of the Riesz mean $\left(R, q_{n}\right)$ is given by

$$
r_{n k}^{q}= \begin{cases}\frac{q_{k}}{Q_{n}}, & \text { if } 0 \leq k \leq n \\ 0, & \text { if } k>n\end{cases}
$$

The Riesz mean $\left(R, q_{n}\right)$ is regular if and only if $Q_{n} \rightarrow \infty$ as $n \rightarrow \infty$ (see, [1, 11]).
Following [1-3, 6-8, 12-14], the sequence space $r^{q}(u, p)$ is defined as

$$
r^{q}(u, p)=\left\{x=\left(x_{k}\right) \in \omega: \sum_{k}\left|\frac{1}{Q_{k}} \sum_{j=0}^{k} u_{j} q_{j} x_{j}\right|^{p_{k}}\right\}<\infty,\left(0<p_{k} \leq H=\sup p_{k}<\infty\right)
$$

where, $u=\left(u_{k}\right)$ is a sequence such that $u_{k} \neq 0$ for all $k \in \mathbb{N}$.
With the notation of (1), we may re-define $r^{q}(u, p)$ as follows:

$$
r^{q}(u, p)=\{l(p)\}_{R_{u}^{q}} .
$$

Define the sequence $y=\left(y_{k}\right)$, which will be used, by the R_{u}^{q}-transform of a sequence $x=\left(x_{k}\right)$, i.e.,

$$
\begin{equation*}
y_{k}=\frac{1}{Q_{k}} \sum_{j=0}^{k} u_{j} q_{j} x_{j} \tag{2}
\end{equation*}
$$

We denote by X^{β} the β-dual of X and mean the set of all sequences $x=\left(x_{k}\right)$ such that $x y=\left(x_{k} y_{k}\right) \in$ cs for all $y=\left(y_{k}\right) \in X$.

2. Main Results

We first state some lemmas which are needed in proving the main results.
Lemma 2.1 [13]. Define the sets $D_{1}(u, p)$ and $D_{2}(u, p)$ as follows,

$$
D_{1}(u, p)=\left\{a=\left(a_{k}\right) \in \omega: \sup _{k}\left|\Delta\left(\frac{a_{k}}{u_{k} q_{k}}\right) Q_{k}\right|^{p_{k}}<\infty \text { and } \sup _{k}\left|\frac{a_{k}}{u_{k} q_{k}} Q_{k}\right|^{p_{k}}<\infty\right\}
$$

and

$$
D_{2}(u, p)=\left\{a=\left(a_{k}\right) \in \omega: \sum_{k}\left|\Delta\left(\frac{a_{k}}{u_{k} q_{k}}\right) Q_{k} C^{-1}\right|^{p_{k}^{\prime}}<\infty \text { and }\left\{\left(\frac{a_{k}}{u_{k} q_{k}} Q_{k} C^{-1}\right)^{p_{k}^{\prime}}\right\} \in l_{\infty}\right\}
$$

Then,

$$
\left[r^{q}(u, p)\right]^{\beta}=D_{1}(u, p) ;\left(0<p_{k} \leq 1\right) \text { and }\left[r^{q}(u, p)\right]^{\beta}=D_{2}(u, p) ;\left(1<p_{k} \leq H<\infty\right)
$$

Lemma 2.2 [13]. $r^{q}(u, p)$ is a complete linear metric space paranormed by g where

$$
g(x)=\left[\sum_{k}\left|\frac{1}{Q_{k}} \sum_{j=0}^{k} u_{j} q_{j} x_{j}\right|^{p_{k}}\right]^{\frac{1}{M}} \text { with } 0<p_{k} \leq H<\infty, M=\max \{1, H\} .
$$

Lemma 2.3 [13]. The Riesz sequence space $r^{q}(u, p)$ of non-absolute type is linearly isomorphic to the space $l(p)$, where $0<p_{k} \leq H<\infty$.

Lemma 2.4 [7]. $f \subset f_{\infty}$.
For simplicity in notation, we shall write

$$
t_{m n}(A x)=\frac{1}{m+1} \sum_{j=0}^{m} A_{n+j}(x)=\sum_{k} a(n, k, m) x_{k}
$$

where,

$$
a(n, k, m)=\frac{1}{m+1} \sum_{j=0}^{m} a_{n+j, k} ;(n, k, m \in \mathbb{N}) .
$$

Also,

$$
\widehat{a}(n, k, m)=\Delta\left[\frac{a(n, k, m)}{u_{k} q_{k}}\right] Q_{k}
$$

where,

$$
\Delta\left[\frac{a(n, k, m)}{u_{k} q_{k}}\right] Q_{k}=\left[\frac{a(n, k, m)}{u_{k} q_{k}}-\frac{a(n, k+1, m)}{u_{k+1} q_{k+1}}\right] Q_{k}
$$

Theorem 2.5.(i) Let $1<p_{k} \leq H<\infty$ for every $k \in \mathbb{N}$. Then $A \in\left(r^{q}(u, p): f_{\infty}\right)$ if and only if there exists an integer $C>1$ such that

$$
\begin{align*}
& \sup _{n, m \in \mathbb{N}} \sum_{k}\left|\widehat{a}(n, k, m) C^{-1}\right|^{p_{k}^{\prime}}<\infty, \tag{3}\\
& \left\{\left(\frac{a_{n k}}{u_{k} q_{k}} Q_{k} C^{-1}\right)^{p_{k}^{\prime}}\right\} \in l_{\infty} \text { for all } n \in \mathbb{N} \tag{4}
\end{align*}
$$

(ii) Let $0 \leq p_{k} \leq 1$ for every $k \in \mathbb{N}$. Then $A \in\left(r^{q}(u, p): f_{\infty}\right)$ if and only if

$$
\begin{equation*}
\sup _{n, k, m \in \mathbb{N}}|\widehat{a}(n, k, m)|^{p_{k}}<\infty \tag{5}
\end{equation*}
$$

Proof. Since $f_{\infty}=l_{\infty}$, so the proof follows from [Th. 3.1, 13].
Theorem 2.6. Let $1<p_{k} \leq H<\infty$ for every $k \in \mathbb{N}$. Then $A \in\left(r^{q}(u, p): f\right)$ if and only if (3), (4), (5) holds of Theorem 2.5 and there is a sequence of scalars $\left(\beta_{k}\right)$ such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \widehat{a}(n, k, m)=\beta_{k}, \text { uniformly in } n \in \mathbb{N} \tag{6}
\end{equation*}
$$

Proof: Sufficiency. Suppose that the conditions (3), (4), (5) and (6) hold and $x \in r^{q}(u, p)$. Then $A x$ exists and we have by (6) that $\left|a(n, k, m) C^{-1}\right|^{p_{k}^{\prime}} \rightarrow\left|\beta_{k} C^{-1}\right|^{p_{k}^{\prime}}$ as $m \rightarrow \infty$, uniformly in n and for each $k \in \mathbb{N}$, which leads us with (3) to the inequality

$$
\sum_{j=0}^{k}\left|\beta_{j} C^{-1}\right|^{p_{j}^{\prime}}=\lim _{m \rightarrow \infty} \sum_{j=0}^{k}\left|\widehat{a}(n, j, m) C^{-1}\right|^{p_{k}^{\prime}} \text { (uniformly in } n \text {) }
$$

$$
\begin{equation*}
\leq \sup _{n, m \in \mathbb{N}} \sum_{j=0}^{k}\left|\widehat{a}(n, j, m) C^{-1}\right|^{p_{k}^{\prime}}<\infty, \tag{7}
\end{equation*}
$$

holding for every $k \in \mathbb{N}$. Since $x \in r^{q}(u, p)$ by hypothesis and $r^{q}(u, p) \cong l p$ (by Lemma 2.3 above), we have $y \in l(p)$. Therefore, it follows from (7) that the series $\sum_{k} \beta_{k} y_{k}$ and $\sum_{k} \widehat{a}(n, k, m) y_{k}$ converges for each m, n and $y \in l(p)$. Now, for a given $\epsilon>0$, choose a fixed $k_{0} \in \mathbb{N}$ such that $\left(\sum_{k=k_{0}+1}^{\infty}\left|y_{k}\right|^{p_{k}}\right)^{\frac{1}{p_{k}}}<\epsilon$. Then, there is some $m_{0} \in \mathbb{N}$ such that $\left|\sum_{k=0}^{k_{0}}\left[\widehat{a}(n, k, m)-\beta_{k}\right]\right|<\epsilon$ for every $m \geq m_{0}$, uniformly in n. Since (6) holds, it follows that $\left|\sum_{k_{0}+1}^{\infty}\left[\widehat{a}(n, k, m)-\beta_{k}\right]\right|$ is arbitrary small. Therefore, $\lim _{m} \sum_{k} a(n, k, m) x_{k}=\lim _{m} \sum_{k} \widehat{a}(n, k, m) y_{k}=\sum_{k} \beta_{k} y_{k}$ uniformly in n. Hence, $A x \in f$, this proves sufficiency.

Necessity. Suppose that $A \in\left(r^{q}(u, p): f\right)$. Then, since $f \subset f_{\infty}$ (by Lemma 2.4 above), the necessities of (3) and (4) are immediately obtained from Theorem 2.3 (above). To prove the necessity of (6), consider the sequence

$$
b_{n}^{k}(q)= \begin{cases}(-1)^{n-k} \frac{Q_{k}}{u_{n} q_{n}}, & \text { if } k \leq n \leq k+1 \\ 0, & \text { if } 0 \leq n<k \text { or } n>k+1\end{cases}
$$

Since $A x$ exists and is in f for each $x \in r^{q}(u, p)$, one can easily see that $A b^{(k)}(q)=\left\{\Delta\left(\frac{a_{n k}}{u_{k} q_{k}}\right) Q_{k}\right\}_{n \in \mathbb{N}} \in f$ for all $k \in \mathbb{N}$, which proves the necessity of (6). This concludes the proof.

Theorem 2.7. Let $1<p_{k} \leq H<\infty$ for every $k \in \mathbb{N}$. Then $A \in\left(r^{q}(u, p): f_{0}\right)$ if and only if (3), (4), (5) and (6) holds with $\beta_{k} \rightarrow 0$ for each $k \in \mathbb{N}$.

Proof. The proof follows from above Theorem 2.6 by taking $\beta_{k} \rightarrow 0$ for each $k \in \mathbb{N} \square$.
Corollary 2.8. By taking $u_{k}=1$ for all $k \in \mathbb{N}$, we get results obtained by Jalal and Ganie [5].
Acknowledgement. We are very thankful to the refree(s) for the careful reading, valuable suggestions which improved the presentation of the paper.

References

[1] B. Altay and F. Başar, On the paranormed Riesz sequence space of nonabsolute type, Southeast Asian Bulletin of Mathematics 26(2002) 701-715
[2] S. Banach, Theöries des operations linéaries, Warszawa 1932.
[3] C. Cakan, B. Altay and M. Mursaleen, The σ-convergence and σ-core of double sequences, Applied Mathematics Letters 19(2006) 1122-1128.
[4] S. A. Gupkari, Some new sequence space and almost convergence, Filomat 22(2)(2008) 59-64.
[5] T. Jalal and A. H. Ganie, Almost Convergence and some matrix transformation, Shekhar(New Series)- International Journal of Mathematics 1(1) (2009) 133-138.
[6] K. Kayaduman and M. Sengnl, The spaces of Cesáro almost convergent sequences and core theorems, Acta Mathematica Scientia 32 B(6)(2012) 2265-2278.
[7] G. G. Lorentz, A contribution to the theory of divergent series, Acta Mathematica (80)(1948) 167-190.
[8] M. Mursaleen, A. M. Jarrah and S. A. Mohiuddine, Almost convergence through the generalized de la Vallee-Pousin mean, Iranian Journal of Science and Technology Transaction A-science 33(2009) 169-177.
[9] M. Mursaleen and S.A. Mohiuddine, Double σ-multiplicative matrices, Journal of Mathematical Analysis and Applications 327(2007) 991-996.
[10] M. Mursaleen and E. Savas, Almost regular matrices for double sequences, Studia Scientiarum Mathematicarum Hungarica 40(2003) 205-212.
[11] S. Nanda, Matrix transformations and almost boundedness, Glasnik Matematicki 14(34) (1979) 99-107.
[12] G. M. Petersen, Regular matrix transformations. McGraw-Hill Publishing Co. Ltd., London-New York-Toronto 1966.
[13] N. A. Sheikh and A. H. Ganie, A new paranormed sequence space and some matrix transformations, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis 28(1)(2012) 47-58.
[14] N. A. Sheikh and A. H. Ganie, A new type of sequence space of non-absolute type and matrix transformation, WSEAS Transaction Journal of Mathematics 8(12) (August-2013) 852-589.
[15] N. A. Sheikh and A. H. Ganie, On the spaces of λ-convergent sequences and almost convergence, Thai Journal of Mathematics 11(2)(2013) 393-398.

[^0]: 2010 Mathematics Subject Classification. Primary 40A05, 46A45; Secondary 46C05
 Keywords. Sequence space of non-absolute type, almost convergence, β-duals and matrix transformations
 Received: 23 November 2013; Accepted: 04 April 2014
 Communicated by Dragan S. Djordjević
 Corresponding author: Ab. Hamid Ganie
 Email addresses: ashamidg@rediffmail.com (Ab. Hamid Ganie), neyaznit@yahoo.co.in (Neyaz Ahmad Sheikh)

